
Spin-wave theory for the biaxial (m=2) Lifshitz point problem in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 L201

(http://iopscience.iop.org/0305-4470/13/6/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., 13 (1980) L201-L205. Printed in Great Britain 

LETTER TO THE EDITOR 

Spin-wave theory for the biaxial (m = 2) Lifshitz point 
problem in three dimensions 

G Grinstein 
IBM T J Watson Research Center, Yorktown Heights, NY 10598, USA 

Received 19 February 1980 

Abstract. It is known that no long-range order can exist on the boundary between the 
helical phase (wherein the magnetisation varies spatially in one or more of m distinct 
directions) and the ferromagnetic phase in the biaxial (m = 2) Lifshitz point problem in 
three dimensions when n, the number of components of the order parameter, is greater than 
unity. The Gaussian (quadratic) spin-wave approximation to the n = 2 problem predicts 
that on this phase boundary correlations decay as power laws at large distance. It is shown 
here that the presence of a marginal quartic spin-wave operator produces logarithmic 
corrections to the power laws. 

Mermin and Wagner (1966) have proved that there can be no long-range order in the 
two-dimensional ( 2 ~ )  XY model. The 'Gaussian spin-wave' (sw) approximation to the 
model nonetheless predicts power law decay of spin correlation functions at all 
temperatures (Wegner 1967, Berezinskii 1971, Zittartz 1976a, b), rather than the 
exponential decay which typically characterises a disordered phase. Since the sw 
theory is presumably an excellent approximation at low temperatures, these power laws 
strongly suggested that the 2~ XY model has an unorthodox phase at low T. Kosterlitz 
and Thouless (1973) and Kosterlitz (1974) subsequently showed that the model indeed 
undergoes a continuous transition from an orthodox paramagnetic state at high T to a 
state with algebraically decaying correlations but no long-range order at low T. 

It has been appreciated for some time (Grest and Sak 1978) that the model 
describing the ' m  =2,  n = 2  Lifshitz point ( 2 2 ~ ~ ) '  (Hornreich et a1 1975) is a 3~ 
analogue of the 2~ XY model, in that on the one hand it cannot exhibit long-range 
order, while on the other hand calculations in 3 + E  dimensions (Grest and Sak 1978) 
suggest that the 3~ problem has a finite critical temperature T,. 

In this Letter we study the sw theory for this 3~ problem. We show that the 
long-distance behaviour of correlation functions is, in contrast to the 2~ XY case, not 
completely described by the Gaussian sw approximation, even at very low T. There is, 
in addition to the marginal quadratic sw operators familiar from the 2~ XY problem, a 
marginal quartic operator in the 2 2 ~ ~  sw theory. Standard renormalisation group (RG) 
analysis of this marginal operator gives, as usual (Wegner and Riedel1973), logarithmic 
corrections to the power laws predicted by the Gaussian sw theory. That is, the 
spin-spin correlation function G(r)  behaves like r-"(T)(log r)- ir(T)  for large r ;  77 and 6 
are non-universal functions of T in that they depend on the details of the short-distance 
cut-off used to ensure the finiteness of the theory. 
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The general ‘m, n, d’ LP problem is described (Hornreich et al 1975) by the free 
energy functional 

dd~[(V,S)2+A(V~~S)Z+(ViS)2]. (1) 

Here J is the exchange strength, the parameter A will assume poth positive and 
negative values, and the spin S has n components and unit magnitude: S2 = 1. Of the d 
spatial dimensions, m are arbitrarily denoted ‘parallel’, and the remaining d - m 
‘perpendicular’. That is, 

Hamiltonian I? gives rise to the phase diagram shown schematically in figure 1. The LP 
is the critical point connecting the paramagnetic ( ( S )  = 0), ferromagnetic ((S(q = 0)) # 
0 )  and helical ( (S(q ,  = 0, 411 - IA/1’2)) # 0) phases. 

t 
T 

I 
0 

A-+ 

Figure 1. Schematic Lifshitz point phase diagram as a function of temperature T and the 
parameter A. The paramagnetic (P), ferromagnetic (F) and helical (H) phases meet at the 
Lifshitz point (L). The present Letter is concerned with the ferromagnetic-helical phase 
boundary. 

In the ferromagnetic domain of figure 1 the transverse spin-spin correlation 
function for n 2 2 behaves roughly like [q? +Dq;f + (qf)’]-’ for small q, where D is a 
positive function of A and T. As the helical region is approached, D decreases, 
vanishing on the phase boundary between the helical and ferromagnetic regions. On 
this boundary, then, the assumption of ferromagnetic order implies a transverse spin 
correlation function which in position space behaves like ddW2q, d2qii/[q: + 
near q = 0 for m = 2 (the biaxial case), and therefore diverges for d G 3. Thus for n 2 2 
and m = 2 there cannot be long-range order on the boundary. (The possibility that a 
first-order ferromagnetic-helical transition occurs for some positive D, thereby invali- 
dating this argument, cannot be ruled out. In this Letter we consider the consequences 
of a continuous disappearance of ferromagnetic order.) 
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Grest and Sak's (1978) (3  +€)-dimensional calculations for the m = 2 LP suggest, in 
analogy with 2 + E  expansions for the n-vector model (Migdal 1975, Polyakov 1975, 
BrCzin and Zinn-Justin 1976), that the 2 2 ~ ~  problem in 3~ has a finite T,. The low-T 
phase of this model can be investigated by sw theory, readily constructed by the 
substitution (BrCzin and Zinn-Justin 1976) S =SI + i s2  = eiwe in (1); this fulfils the 

becomes Tr e-H, where Sf + S$ = 1 constraint. The partition function 2 = Tr e- &k,T 

U = w 2 =  kBT/J, and 8(x) runs from -00 to 00. This constitutes the sw approximation. 
The Gaussian (quadratic) sw approximation is obtained by setting U to zero in the 

Hamiltonian (2); the LP then occurs at A = 0. The problem becomes formally identical 
to sw descriptions of a smectic A liquid crystal. In that context the correlation functions 
have already been evaluated (CaillC 1972): (§) = 0 as anticipated, while G(x) = 
(S(x)S(O)) is a complicated anisotropic function which behaves at large 1x1 like x [ ~ ~ ~ / ~ ~ ~  
and x ;kBT/8mJ in the parallel and perpendicular directions respectively. 

The [ ( V I I O ) ~ ] ~  term can be treated by standard renormalisation group methods. 
Simple power counting shows (Wegner 1976) that the operator is marginal at all 
temperatures. To see this explicitly note that if the terms (Vif3)2 and A (V,18)2 in (2) 
are to be properly dimensionless, 8 and A must have dimensions p-1/2 and p2  
respectively, where F is a mass. In that case, however, j (V,8)* has dimension p-', and 
the quadratic part of the Hamiltonian should really be written in the form 

d3y[p2(V,$)2+A(V11$)2+(V;fe')2]. The extraneous mass p can be eliminated by the 
transformation e'(yll, yL) = p-1/20(x11, x,), yll= XII, y, = ,uI, whereupon d y = 
d2yli dy, = p d3x and the Hamiltonian acquires the form (2), with 8 now dimensionless 
and xL having dimension p-'. It follows at once that the coupling constant U of the 
5 [ ( V I I ~ ) ~ ] ~  term is dimensionless; this is the classic signature of a marginal operator 
(BrCzin et a1 1976, Wegner 1976). 

It is convenient to employ the techniques of BrCzin et a1 (1976) to generate the 
following RG equation for the spin-spin correlation function G(x, U, w, A) = 

); here A is the high-momentum cut-off for the theory, and for simplicity 
we set x = (XI[, x1 = 0): 

3 

(eiwf3(x) -iwO(O) e 

&(U, w )  = C 1 W U 2 + O ( W U 3 ) ,  ( 3 b )  

&,(U) =9u2/8.rr+O(u3), ( 3 c )  

y(u,  w )  = w2/45T+c2uw4+0(u2) .  ( 3 4  

Here 1 =log A, c1 = [(log $) -&]/27r2, c2 = (log %)/(4~)~ and the higher-order terms on 
the right-hand sides of ( 3 6 ) - ( 3 d )  have coefficients which are of course non- 
universal: they depend on the details of the high-momentum cut-off prescription. In 
the derivation of these equations A has been chosen as a function of U to locate the 
ferromagnetic-helical phase boundary; the equations are therefore independent 
of A. Note that G, being dimensionless, is really a function only of the three variables 
(XI$), U and w. 
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The solution of (3a) is well known (Amit 1978); for large 1 we have 

where ;(U, T )  and $(U,  w, T )  are determined by the equations dU' /d~  = -pu(U'), = 
-pw(U', 6) and the boundary conditions U'(U, 0) = U, $(U,  w, 0) = w. The marginality of 
the [(V$?)2]2 operator is manifest (Wegner and Riedel 1973) in the absence of a term 
linear in U' (see (3c)) on the right-hand side of the U' equation, which for small U has the 
solution 

U' = ( ~ - ' + 9 ~ / 8 r ) - ' .  ( 5 )  

(It is simple to verify that all powers of VI10 and VIO higher than those in Hamiltonian (2) 
are irrelevant operators: their inclusion in (2) does not alter the large-distance 
behaviour of correlation functions.) 

The solution of the 6 equation follows from ( 3 b )  and ( 5 ) :  

6 = w exp[(-clu27)(1 +9~7/8r)-'] .  (6)  

Substitution of (5) and (6) into (4 ) ,  and integration then yields for large X I [  

where 

7 (T) = ( w 2 / 4 r ) (  1 - 16rc1 u/S + O(u2)), (7b) 

(7c) 
and U = w z  = kgT/J. For X I I  = 0 and finite x I  one similarly obtains (7a) with xi1 replaced 
by x:". Note that while the complete function 7 (and hence 6) is non-universal, the 
two terms explicitly displayed in (7b) are universal (that is, cut-off -independent). As 
T + 0, 7 approaches the limit kBT/4.?rJ. 

The sw theory predicts logarithm-corrected power laws at all temperatures. It is too 
crude to provide any information about the Lifshitz point; that is, about the transition 
into the paramagnetic phase where correlations decay exponentially. It is, however, 
reliable at low temperatures along the line separating the helical and ferromagnetic 
phases. Presumably the logarithm-corrected power laws persist right up to the Lifshitz 
point along that line. 

Although the sw description of a smectic A liquid crystal (CaillC 1972) is similar to 
the sw theory studied here, the (Vl10)2 and  VI@)^]^ terms are prevented (Landau and 
Lifshitz 1958) by symmetry from entering the liquid crystal Hamiltonian. No 
logarithmic corrections mar the algebraic decay in a smectic A (Als-Nielsen e? a1 1977) 
at large distance. 

The sw approximation to the 2 2 ~ ~  problem in a magnetic field is described by a 3~ 
anisotropic sine-Gordon equation, which, like its 2~ isotropic counterpart (Coleman 
1975, JosC e? a1 1977, Wiegmann 1978, Ohta 1978, Amit e? a1 1979) exhibits an 
infinite-order (Kosterlitz 1974, Wegner 1976) phase transition. Details will be given 
elsewhere. 

$ ( T )  = (128r2/9) (c i~(T) /g  + r C z T 2 ( T ) ) ,  

I thank A Aharony, J Als-Nielsen, B Friman, P Horn, Y Imry, C Jayaprakash, L 
Kadanoff, S Kirkpatrick, R Pelcovits and E Pytte for helpful conversations, and C 
Jayakaprash and S Kirkpatrick for critical reading of the manuscript. 
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Note added in proof. T A Kaplan (1980 Phys. Rev. Lett. 44 760) has independently 
studied the Gaussian spin wave theory for the m = 2 d = 3 LP problem. 
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